Skip to main content

Crumblebot - explorer bot?

In an earlier post I played with 4Tronix's CrumbleBot to make an edge follower robot ( I wanted to play a little more, so I looked at making it 'explore' a room a bit and recently 4Tronix's have released an add-on panning ultrasonic sensor for the CrumbleBot - how can I resist?

What is a CrumbleBot
The CrumbleBot ( is based around the Redfern Electronic's Crumble Controller ( and Crumble software (; providing an intuitive graphical interface (similar to Scratch) to control two motors and four inputs/outputs. The CrumbleBot comes with a number sensors including  line-detecting sensors and Light-Dependent Resistors for light detection and you use crocodile clips to connect the sensors to the inputs/outputs. In essence, this is nice little framework for simple robotics and quite forgiving; the commands are kept to a minimum and loading the program to the bot is just one action. One suggestion, is to make sure you order the Crumble Controller at the same time as CrumbleBot, it is easy to forget if you haven't already got a crumble controller already.

Building the 'Bot' is relatively simple and 4Tronix have provided some easy to follow instructions on-line ( that are almost foolproof (I manage to build it!).

Panning sensor

This is an add-on piece (, at the time of writing this costing around £12 (with VAT), which adds a ultrasonic sensor that pans and is controlled using Crumble. The instructions for setting this up are available at you need to read from about half way down the page, they are detailed and please don't do what I did and skim through them, missing out an important action. 

The Crumblebot is built, the Panning ultrasonic sensor is connected - in my case IO port A for the servo to pan the sensor and IO port D for the input from the sensor - time to program it. The instructions in the set-up include a useful little starting routine to read the sensor and 'zero' the sensor's position.

So my exploring routine is based around 

  • panning the sensor by +/-20 degrees of the sensor facing forward.
  • if an object is 5cm or less from the sensor; reverse the Crumblebot and make a slight turn; otherwise move forward.
The code is shown below:

The video shows the 'Explorerbot' in action.

It is good fun; this is a relatively simple problem but still fun. The Crumble language is Scratch-like and simple to set up and use. Crumble as a system I have, so far, found quite forgiving and this is useful - less fear of making a mistake.The panning sensor gives this already cute robot an even cuter look. Please feel free to add the discussion using the comment section.

All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Popular posts from this blog

Micro:bit, Servo control with Micropython or blocks

You can control servos (small ones) from a Micro:Bit directly. Following a link from the David Whale (Twitter ) , thank you, took me to a Kitronik blog post,, which has the answer.

The code uses Microsoft Blocks taken from the post, runs the servos 180 degrees and back again, when button A is pressed. It does exactly what it should. I am also using the Tower Pro SG90 servo.
Can it be replicated in Micropython? This is a new mini project, there seems to be little out there yet on how do this but the best so far is this video by PHILG2864:

The closest I have is the following, it is essentially there.
from microbit import *
while True:

Setting the time period to 20ms  pin0.set_analog_period(20)seems by experiment (and used in the video above) to be best value so far. The reason for pin0.write_analog(1)  set to 1 i…

4Tronix Bit:Bot Neuron Controlled Edge follower

In thelast post I was playing with 4Tronix'sBit:Bot. In this post I will show the initial experimentation with an artificial neuron controlling the Bit:Bot to follow the edge of a line (it follows the left-hand side of the line).

The neurons (well two separate ones, S1 and S2) are produced using weighted sums - summing the weights x inputs [ right-hand sensor (rs) and left-hand sensor (ls)] plus a bias for each neuron in this case w[0] and w[3].

    net=w[0]+w[1]*rs+w[2]*ls           net2=w[3]+w[4]*rs+w[5]*ls

  If weighted sum >=0 then its output 1 otherwise 0 if net>=0:          s1=1     else:         s1=0
    if net2>=0:         s2=1     else:         s2=0
What actual causes S1 to be either 1 or 0 is all defined by a set of weights w (three for the first neurone, S1,  three for S2).

Converting the outputs of the two neurones S1 and S2 into actions is shown below.

my robot BETT2017

I will start with a confession, I only had about 2 1/2 hours at BETT 2017 due to external time pressures so to say I didn't yet a chance for a good (or even a bad) look around is an understatement; so I am not reviewing the show just a few notes on what I did manage to see.

STEAM Village
First and mostly, it was great to talk to so many people, only few I had met face to face previously, about robots, micro:bits, Raspberry Pis and coding. Most of this happen in the relatively small (compared to the event space) STEAM village and nearby stalls. It was great to see the strong presence of both Raspberry Pi and Micro:Bit Foundation, along the variety of different activities and example usage of both, with Code Club (I know it is part of Raspberry Pi Foundation) there was well. This was all alongside some other companies

Four of these stuck in my mind.

1. DFRobot ( with their range of Arduino-based robots and non-programmable kits. The two kits that caught my eye w…