Skip to main content

Do it yourself: Remote Controlled Micro:Bit Junkbot

In an earlier post, I showed how you could build a Micro:Bit controlled Junkbot. In this post I want to show a modification to it, to use one Micro:Bit to control the junkbot controlled by another Micro:Bit. A nice feature of the Micro:Bit using micropython, is it can send and receive simple messages via radio - so here is my take on it.

The first problem is the Python editor available on https://www.microbit.co.uk/ does not seem to work with the radio API. One solution to this is to change to the mu editor.


Two pieces of code are needed.

Sending Code for the 'remote' control:
Essentially it is set up to send two messages, via the built-in radio module, spinl or spinr depending on which button is pressed.

import radio
from microbit import button_a, button_b

radio.on()

while True:
   if button_a.is_pressed():
       radio.send('spinl')
   if button_b.is_pressed():

       radio.send('spinr')

Junkbot Code
This takes an adapted form of the previous Junkbot code to work by; on receiving spinl or spinr via the radio link; spin the motor clockwise or anticlockwise.
import radio
from microbit import pin8, pin12, sleep

def leftTurn(duration):
   pin8.write_digital(0)
   pin12.write_digital(1)
   sleep(duration)
   
def rightTurn(duration):
   pin8.write_digital(1)
   pin12.write_digital(0)
   sleep(duration)
   
def stopIt():
   pin8.write_digital(0)
   pin12.write_digital(0)

radio.on()
while True:
   incoming = radio.receive()
   if incoming == 'spinl':
        leftTurn(500)
        stopIt()
   if incoming == 'spinr':
        rightTurn(500)
        stopIt()








All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Comments

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

WebVR 3 Playtime: Augmented Reality

I am going to try to persuade you that using A-Frame it is not hard to do some simple Augmented Reality (AR) for free, via a browser, but that also can run on a mobile device. Introduction This is part of a short series of articles about some experiments with WebVR Web-based Virtual Reality - in this case based on the wonderful A-Frame  ( https://aframe.io )   .  In the first post  WebVR playtime 1: Basics of setting up, images and rotating blocks ,  I looked at setting up a scene and then rotating an object.  In the second pos t, recapped the basics, then look at adding video, 360 degree video, and models developed elsewhere. In this post we are going to start looking at using WebVR as part of an augmented reality solution. I going to start by building on the great resource Creating Augmented Reality with AR.js and A-Frame by Jerome Etienne, creator of AR.js - the starting code below and the basis of the solution ...