Skip to main content

UFO talks to Robot - part two

In part one of this series of posts, the project to get Consumable Robotics UFO and Dimm robot was started but focussed on the UFO kit. The goal being for some action on Dimm to trigger a series of messages being passed between the two of them.

In this post, the focus moves to Dimm and the setting up the actions leading to the messaging.

Stage 1 Build
Using the Micro:bits port 0 (as part of the Dimm robot) for the input from the light sensor, which is included in the kit (Red lead going to 3v and the black lead going to GND). Just to note the less light there is the higher the value on the sensor.




Stage 2 Code
Micropython programmed through the Mu editor (see below)

If light levels are high then :
      scroll a message saying "calling UFO" 
      send the code "dimm" via bluetooth.
otherwise: 
      scroll a message saying "I can't see"
If it recieves "ufo" via bluetooth :
      display "Hello, UFO called me"

Micropython code
import radio
from microbit import pin0, pin1, display, sleep

radio.on()

while True:
   incoming = radio.receive()
   if incoming == 'ufo':  
      display.scroll("Hello, UFO called me", 75)
   if pin0.read_analog()<175:
        display.scroll("calling UFO")
        radio.send("dimm")
   else:
        display.scroll("I can't see")

Stage 3 Testing

Video below shows it in action including what happens when the light (in this case a torch) shines on the sensor connected to Dimm; a message is sent and picked up by the UFO kit (LEDs flash and the message saying "DIMM calling" scrolls  across the UFO LED array - see UFO talks to robot - part one for more details). A message is sent back from the UFO kit and on Dimm's LED array the message "Hello, UFO called me").
If the light levels are too low then the message "I can't see" scrolls across Dimm's LED array.






As an aside, the Dimm robot still reminds me, a little, of a colourful, friendly, Ood from Dr Who with all the leads hanging out of the 'mouth' - think that is geeky I know.




All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Popular posts from this blog

Micro:bit, Servo control with Micropython or blocks

You can control servos (small ones) from a Micro:Bit directly. Following a link from the David Whale (Twitter ) , thank you, took me to a Kitronik blog post, https://www.kitronik.co.uk/blog/using-bbc-microbit-control-servo/, which has the answer.

The code uses Microsoft Blocks taken from the post, runs the servos 180 degrees and back again, when button A is pressed. It does exactly what it should. I am also using the Tower Pro SG90 servo.
Can it be replicated in Micropython? This is a new mini project, there seems to be little out there yet on how do this but the best so far is this video by PHILG2864:



The closest I have is the following, it is essentially there.
from microbit import *
pin0.set_analog_period(20)
while True:
    pin0.write_analog(180)
    sleep(1000)
    pin0.write_analog(1)
    sleep(1000)

Setting the time period to 20ms  pin0.set_analog_period(20)seems by experiment (and used in the video above) to be best value so far. The reason for pin0.write_analog(1)  set to 1 i…

4Tronix Bit:Bot Neuron Controlled Edge follower

In thelast post I was playing with 4Tronix'sBit:Bot. In this post I will show the initial experimentation with an artificial neuron controlling the Bit:Bot to follow the edge of a line (it follows the left-hand side of the line).


The neurons (well two separate ones, S1 and S2) are produced using weighted sums - summing the weights x inputs [ right-hand sensor (rs) and left-hand sensor (ls)] plus a bias for each neuron in this case w[0] and w[3].







    net=w[0]+w[1]*rs+w[2]*ls           net2=w[3]+w[4]*rs+w[5]*ls

  If weighted sum >=0 then its output 1 otherwise 0 if net>=0:          s1=1     else:         s1=0
    if net2>=0:         s2=1     else:         s2=0
What actual causes S1 to be either 1 or 0 is all defined by a set of weights w (three for the first neurone, S1,  three for S2).
w=[0,-1,1,-1,1,-1]


Converting the outputs of the two neurones S1 and S2 into actions is shown below.

my robot BETT2017

I will start with a confession, I only had about 2 1/2 hours at BETT 2017 due to external time pressures so to say I didn't yet a chance for a good (or even a bad) look around is an understatement; so I am not reviewing the show just a few notes on what I did manage to see.


STEAM Village
First and mostly, it was great to talk to so many people, only few I had met face to face previously, about robots, micro:bits, Raspberry Pis and coding. Most of this happen in the relatively small (compared to the event space) STEAM village and nearby stalls. It was great to see the strong presence of both Raspberry Pi and Micro:Bit Foundation, along the variety of different activities and example usage of both, with Code Club (I know it is part of Raspberry Pi Foundation) there was well. This was all alongside some other companies

Four of these stuck in my mind.

1. DFRobot (https://www.dfrobot.com/) with their range of Arduino-based robots and non-programmable kits. The two kits that caught my eye w…