Skip to main content

mBot - cute, fun and Arduino based

I have had an opportunity (ie, the time) to play with mBot, Scratch Programmable Robot using the mBlock software which appears to be a modified version of Scratch - so relatively easy to use. They have added a section of blocks, to the standard set, marked Robots containing blocks for both Arduino and mBot. 

An earlier blog post (mbots - graphical programming and Arduino) discuss some of the basics of the robot. Just for fun I wanted to play with the ultrasonic sensor, getting the robot to react, change direction (run away) and the 'face' on an LED matrix that came with the robot if there is an object in the way.



The routine
  • Loop
    • Show a smiley face (using Port 4 )
    • If the ultrasonic detector senses something close (guessed at a setting of 10)
      • Go backwards quickly
      • Play a tone
      • Show an upside-down smiley face 
      • wait 1 sec
    • Otherwise
      • Move forward
  • End the loop


Download the code to the mBot using the Upload to Arduino button (see below). Here is where you find out whether you have set the system up correctly. In the mBlock editor pull down menu choose Connect and select the required connection; I have been using a USB cable so I needed to select the serial option and select the USB hub. After that using the Upload to Arduino button did lead to the code downloading.






The video below shows it in action






This is good fun, and a very cute. The build quality of the bots (not my building ability) the metallic construction means the bots feel substantial.  The software as it is Scratch based I think it will be interesting to try it out with my Code Clubbers - especially as they have been asking to play with more robots.

As always I would be interested to hear from others on their experiences of using this little robot.

Related links
mbots - graphical programming and Arduino






All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Popular posts from this blog

Micro:bit, Servo control with Micropython or blocks

You can control servos (small ones) from a Micro:Bit directly. Following a link from the David Whale (Twitter ) , thank you, took me to a Kitronik blog post, https://www.kitronik.co.uk/blog/using-bbc-microbit-control-servo/, which has the answer.

The code uses Microsoft Blocks taken from the post, runs the servos 180 degrees and back again, when button A is pressed. It does exactly what it should. I am also using the Tower Pro SG90 servo.
Can it be replicated in Micropython? This is a new mini project, there seems to be little out there yet on how do this but the best so far is this video by PHILG2864:



The closest I have is the following, it is essentially there.
from microbit import *
pin0.set_analog_period(20)
while True:
    pin0.write_analog(180)
    sleep(1000)
    pin0.write_analog(1)
    sleep(1000)

Setting the time period to 20ms  pin0.set_analog_period(20)seems by experiment (and used in the video above) to be best value so far. The reason for pin0.write_analog(1)  set to 1 i…

mbots - graphical programming and Arduino

Makeblock (http://mblock.cc/mbot/) funded through Kickstarter the development of a new robot - mBot (https://www.kickstarter.com/projects/1818505613/mbot-49-educational-robot-for-each-kid) with the subtitle "$49 educational robot for each kid". What they came up with is a interesting system that uses their mBlock software, which resembles Scratch but produces code for Arduino, to program a robot with LEDs, light sensors and buzzer integrated on the main board; but also comes with sensors for line-following, ultrasonic sensor and with the version in the kickstarter reward a 16x8 LED matrix.

My impression so far it is really quite intuitive to work with, in the example above the robot:

moves forward;displays 'f' on the LED matrix; turns right;displays 'r' on the LED matrix;repeats until the on-board is pressed to stop the motors. 

What I like most though is seeing the graphical code turned into Arduino code - the potential to see the same thing done into two ways…

4Tronix Bit:Bot Neuron Controlled Edge follower

In thelast post I was playing with 4Tronix'sBit:Bot. In this post I will show the initial experimentation with an artificial neuron controlling the Bit:Bot to follow the edge of a line (it follows the left-hand side of the line).


The neurons (well two separate ones, S1 and S2) are produced using weighted sums - summing the weights x inputs [ right-hand sensor (rs) and left-hand sensor (ls)] plus a bias for each neuron in this case w[0] and w[3].







    net=w[0]+w[1]*rs+w[2]*ls           net2=w[3]+w[4]*rs+w[5]*ls

  If weighted sum >=0 then its output 1 otherwise 0 if net>=0:          s1=1     else:         s1=0
    if net2>=0:         s2=1     else:         s2=0
What actual causes S1 to be either 1 or 0 is all defined by a set of weights w (three for the first neurone, S1,  three for S2).
w=[0,-1,1,-1,1,-1]


Converting the outputs of the two neurones S1 and S2 into actions is shown below.