Showing posts with label junk. Show all posts
Showing posts with label junk. Show all posts

Sunday, 11 September 2016

How to do it yourself: Microbit Junkbot


What is a Junkbot?
For this project, it is a moving ‘bot’ made from waste materials, combined with an electric motor and a programmable device (in this case a Micro:Bit) to control (or try) it. An example is shown below. More details on junkbots can be found at http://junkbots.blogspot.co.uk/


Stage 1 - The start of a Junkbot
This stage is relatively simple. Tape some pens or straws to a drinks can.




Stage 2 - Physical arrangement of Microbit and motor control board

The control part is this via a Micro:bit (http://www.bbc.co.uk/programmes/articles/4hVG2Br1W1LKCmw8nSm9WnQ/the-bbc-micro-bit). Kitronik produce a motor driver board, and provide quite a bit of support for it, for the Micro:Bit (the latest version of the board can be found at https://www.kitronik.co.uk/5620-motor-driver-board-for-the-bbc-microbit-v2.html ). A 6v battery pack is connected (see on the left of the image) and wires going to a motor are attached to the first block on the front left (marked as motor A).



The overall arrangement is show below, including a broken propellor as an unbalanced load to make the motor vibrate - the propellor was to hand but if you can secure something a clothes peg this could be used.


Stage 3 - Built Junkbot
Now we just need to put them together by taping (or fixing somehow) the motor to the junkbot built in stage 1. A further possibility is to attach the Micro:Bit, motor driver board and battery pack to the junkbots; but this adds weight.








Stage 4 Code
 Using Micropython via the online editor https://www.microbit.co.uk to program the board and therefore the junkbot. 
An example piece of code is shown below:

from microbit import *

def startIt():
   pin8.write_digital(1)
   pin12.write_digital(0)
   pin0.write_digital(1)
   pin16.write_digital(0)    

def leftTurn(duration):
   pin8.write_digital(0)
   pin12.write_digital(1)
   sleep(duration)
   
def stopIt():
   pin8.write_digital(1)
   pin12.write_digital(1)
   sleep(2000)

while True:
   startIt()
   
   if button_a.is_pressed():
       leftTurn(100)
   
   if button_b.is_pressed():
       stopIt()

Unplug the Micro:bit from the motor driver board and download the code to the microbit. Unplug the download cable and plug the Micro:Bit back into the motorboard, with the battery pack attached there is enough power for the Micro:Bit and the motor - don't plug in any other power including the programming cable when it is in the motor driver board.


Stage 5 In action



Suggested Resource List
  • Small Electric Motor
  • Kitronik Motor Board
  • Battery Pack
  • BBC Micro:bit
  • Pens
  • Junk (Can or Bottle)
  • Wires
  • Tape
  • Scissors
  • Broken Propeller or un-balanced load
  • Screw Driver


Related Links






All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Friday, 2 September 2016

Matthew takes control of robot research project

Taken from: http://www.northampton.ac.uk/news/matthew-takes-control-of-robot-research-project/




Matthew Hole
A sixth-form student has spent the summer at the University of Northampton investigating the possibility of controlling DIY robots with a computer half the size of a credit card.
Matthew Hole, who attends Wrenn Academy in Wellingborough, has been awarded a Nuffield Research Placement – a scheme which offers sixth formers the chance to work on university research projects during the summer.
During his time at the University, Matthew used a BBC micro:bit computer  to control a junkbot – a robot made from junk, such as a drinks can, powered by a kit.
Junkbots have previously been controlled by a Raspberry Pi computer, but the University’s Associate Professor in Computing and Immersive Technologies, Dr Scott Turner, saw the potential to harness the micro:bit.
“The micro:bit has been given away free to every Year 7 pupil in the UK, so it made sense to investigate how well it could control a junkbot.
“Matthew worked incredibly hard on the research project, overcoming several problems, and was successful in harnessing the micro:bit to control a junkbot.
“He used his experience to produce an action pack, which will be available for schools to refer to so that pupils can learn how to control a junkbot with the micro:bit – so Matthew’s research has the potential to benefit thousands of young people across the UK and beyond.”
Matthew said: “The project has definitely helped me to develop my problem solving skills: I’ve learnt how to break projects down into small pieces and work on them methodically, which has been really useful,” said Matthew, who has received a bursary to carry out his work.
“To be able to work on an action pack that will be available for schools to use is also a fantastic thing to have on my CV.”

To learn more about the junkbots project contact: scott.turner@northampton.ac.uk or go to http://robotsandphysicalcomputing.blogspot.co.uk/2016/08/creating-microbit-junkbot-for-use-in.html





All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Tuesday, 1 December 2015

Controlling junk with LEGO

Up to this point the junk bot building has largely being about building a moving (or drawing) 'bot' moved by vibration - limited control, but fun. A Nuffield funded bursary student, Hayden Tetley,  has being working within staff from the University of Northampton on whether LEGO 8547: Mindstorms NXT 2.0: Robot or Raspberry Pi based solutions can be incorporated with the bot to add some control of the movement (still by vibration).


Idea One 

Is to add a LEGO NXT brick, to move a junkbot similar.The motor and broken propeller combination in the earlier junkbots is replaced with the NXT brick and LEGO motor. A good potential feature is it a self-contained unit with power and control together, as well as being potentially fairly simple to set-up. This is the focus of this post. 

Here are some videos showing idea one in action using LEGO motors, brick and the software that comes with the LEGO 8547: Mindstorms NXT 2.0: Robot :





For more information on how this was done go to: http://legojunkbots.weebly.com/uploads/3/7/2/2/37227791/nuffield_nxt_mindstorms.docx or http://legojunkbots.weebly.com/

Idea Two

Is to do a similar approach as idea one but keep the motor and broken propeller combination but control the motors via a Raspberry Pi. This is discussed in another post http://robotsandphysicalcomputing.blogspot.co.uk/2015/07/raspberry-pi-controlled-robot-from-junk.html

Details of the work will be published on the Junkbots Blog (htttp://junkbots.blogspot.co.uk/ ) as the project progresses.




All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Remote Data Logging with V1 Microbit

In an earlier post  https://robotsandphysicalcomputing.blogspot.com/2024/08/microbit-v1-datalogging.html  a single microbit was used to log ...