Skip to main content

Junkbots 2 - eggbot2


A new iteration of the junkbots project or more accurately the Crumble-based eggbot sub-project (https://robotsandphysicalcomputing.blogspot.com/2017/10/crumble-based-junk-eggbot.html) is underway. 

Previously it has been built around a single vibrating motor, 'controlled' in the loose sense by a Crumble Controller. (https://amzn.to/3dNl09e).The new development is to use smaller vibrating motors but two of them, controlled by the Crumble. This post looks at the early stage of the development and suggests where to go next. 

Currently, two vibrating motors (https://amzn.to/3mtxEy9) have been attached horizontally to half a plastic egg (figure 1), the kind you can find in dispensing machine with plastic toys, but Kinder Egg ones can also be used. A Crumble is used to control the motors separately (figure 2) by changing the motor's direction. Health warning: It is never going to accurate control but that is part of the charm.



Figure 1

Figure 2




The Crumble code (https://redfernelectronics.co.uk/crumble-software/) used to test the system is shown below.




It moves and changing the direction of the motors does seem to have an effect.


What needs to be done?
  • There is a need for the motors more securely and the same with the wires to the motors. At the moment the motors falling off and wires disconnecting are the biggest problems. 
  • Trying out the new model with pens to get it to draw is part of the next iteration. 
  • Investigating the effect of directions and speed of the motors also needs to be investigated.






All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

WebVR 3 Playtime: Augmented Reality

I am going to try to persuade you that using A-Frame it is not hard to do some simple Augmented Reality (AR) for free, via a browser, but that also can run on a mobile device. Introduction This is part of a short series of articles about some experiments with WebVR Web-based Virtual Reality - in this case based on the wonderful A-Frame  ( https://aframe.io )   .  In the first post  WebVR playtime 1: Basics of setting up, images and rotating blocks ,  I looked at setting up a scene and then rotating an object.  In the second pos t, recapped the basics, then look at adding video, 360 degree video, and models developed elsewhere. In this post we are going to start looking at using WebVR as part of an augmented reality solution. I going to start by building on the great resource Creating Augmented Reality with AR.js and A-Frame by Jerome Etienne, creator of AR.js - the starting code below and the basis of the solution ...