Skip to main content

Coral Dev Board and Raspberry Pi

This is the second of a planned occasional series of posts on playing with some of the current AI specific add-on processors for Intenet of Things (IoT). In the series, it is planned that some experiments with the Google Coral adapter and the Development Board; as well the NVIDIA Jetson Nano will be shown. In the previous post I started playing with the Coral Accelerator with a Raspberry Pi https://robotsandphysicalcomputing.blogspot.com/2019/08/coral-accelerator-on-raspberry-pi.htmlThe Coral environment is related to Google's earlier AIY Edge Tensor Processing Unit (TPU) range https://aiyprojects.withgoogle.com/edge-tpu/ and designed to work with TensorFlow Lite.

In this post, the bigger sibling the Coral Development Board or Coral Dev Board is connected to a Raspberry Pi. The Coral Dev board is a single board Linux computer in its own right, running a derivative of Debian called Mendel. The Pi (in this case I used A Raspberry Pi 2 running Raspbian) is being used as a terminal and to set-up the system in the first place. How to set it up and use it, can be found at  https://coral.withgoogle.com/docs/dev-board/get-started/# - this is the best bet to follow. It was relatively easy to set up, if you follow the instructions (I made a few mistakes)and juggle having several terminals open. A few issues (probably mainly due to my lack of skill) I had during setting it up:


  • Spent while trying to set-up fastboot according to the instructions but the easiest way is sudo apt-get install fastboot
  • I needed to go into root to set up the udev and driver on the pi to flash the Development board.

Apart from that it wasn't too bad.

  

Image below ran on the Development board and was processed with a pre-trained machine learning model to recognise a parrot. 




Figure below shows 76% match to Scarlet Macaw



I am going to enjoy playing with this a bit more, using Pi as terminal, once it is all set-up, seems to work.

Another good source that expands on the use of this device is   https://medium.com/@aallan/hands-on-with-the-coral-dev-board-adbcc317b6af; giving more detail on the device and Python examples on using the Coral Dev board.


Related products, for the Development Board and AIY



All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

Escape the Maze with a VR robot - Vex VR

You don't need to buy a robot to get programming a robot, now there are a range of free and relatively simple to start with robot simulators to play with. Three examples are listed below: - Make code for Lego EV3  https://robotsandphysicalcomputing.blogspot.com/2020/05/programming-robots-virtually-3-lego-ev3.html   - i Robot simulator  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-2-irobot.html - Vex robotics Vexcode VR   https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   It is the last one of these ( https://www.vexrobotics.com/vexcode-vr ) that is the focus of this post and return to hit, after an earlier discussion in  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   .  Two of the nice things about the package, apart from being free, are it uses a Scratch-like programming language and it provides a ...