Skip to main content

Coral Accelerator on a Raspberry Pi

This is the first of a planned occasional series of posts on playing with some of the current AI specific add-on processors for Intenet of Things (IoT). In the series, it is planned that some experiments with the Google Coral adapter and the Development Board; as well the NVIDIA Jetson Nano will be shown.

Why bother? Basic reason is I love playing with AI and hardware - so it is kind of fun. Another reason is AI, IoT and edge computing, are important and growing technologies, and I want to start getting my head around them a bit.

In this post, I look at starting to use Coral Accelerator with a Raspberry Pi. The Coral environment is related to Google's earlier AIY Edge Tensor Processing Unit (TPU) range https://aiyprojects.withgoogle.com/edge-tpu/ and designed to work with TensorFlow Lite.




Good place to start is Google's Get started with the USB Accelerator pretty much all you need to do to get going is in it, it also mentions Raspberry Pi. It makes a good point, if you are using Python 3.7 on Raspberry Pi, at the time of writing the TensorFlow Lite API is up to Python 3.5. Not a problem but just need to be aware of it and Get started with the USB Accelerator offers a solution.

The Coral site has a number of examples you can try out at https://coral.withgoogle.com/examples/ . If you do try the Face detection example within the Object Detection example  on a Raspberry Pi, you need to install feh to see the images; sudo apt-get install feh sorts this.


Some other good sources:
https://medium.com/@aallan/hands-on-with-the-coral-usb-accelerator-a37fcb323553
https://www.raspberrypi.org/magpi/teachable-machine-coral-usb-accelerator/





Related products, but for the Development Board and AIY

All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

Escape the Maze with a VR robot - Vex VR

You don't need to buy a robot to get programming a robot, now there are a range of free and relatively simple to start with robot simulators to play with. Three examples are listed below: - Make code for Lego EV3  https://robotsandphysicalcomputing.blogspot.com/2020/05/programming-robots-virtually-3-lego-ev3.html   - i Robot simulator  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-2-irobot.html - Vex robotics Vexcode VR   https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   It is the last one of these ( https://www.vexrobotics.com/vexcode-vr ) that is the focus of this post and return to hit, after an earlier discussion in  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   .  Two of the nice things about the package, apart from being free, are it uses a Scratch-like programming language and it provides a ...