Skip to main content

starting with NVIDA jetson nano




This is the third of a planned occasional series of posts on playing with some of the current AI specific boards for Intenet of Things (IoT). In the series, it is planned that will be some experiments with the Google Coral accelerator adapter and the Development Board; as well the NVIDIA Jetson Nano. In previous posts I started playing the Coral Accelerator adapter kit and the Coral Development Board.

This post looks a starting with the NVIDIA Jetson Nano Development Kit  which like the Coral Development Board is a small computer designed for running combined embedded and neural network applications. The processing power comes from a quad-core 64-bit ARM CPU and a 128-core integrated NVIDIA GPU (for more details see here)

So before we all get spooked; getting going is relatively easy, basically, follow https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro. Following these instructions I would suggest if you are able to set-up a Raspberry Pi from a download Raspbian image this is not that different





What I wanted to do was attach a camera and grab an image. The board has a MIPI CSI-2 interface which means it should work with a Pi Camera Module V2, here I am using a Leopard Imaging 145FOV wide angle camera & ribbon cable because I had one nearby. A great site, and the one I am using here, for how to use Jetson Nanao and a camera is Jetson Nano + Raspberry Pi Camera which takes you through setting it and testing including the code below to test it. 





$ gst-launch-1.0 nvarguscamerasrc ! 'video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12' ! nvvidconv flip-method=0 ! 'video/x-raw,width=960, height=616' ! nvvidconv ! nvegltransform ! nveglglessink -e

The image below was grabbed using the Jetson and camera




I found it easier to get going with this board then the Coral development board (though I do like that as well) and I am looking forward to playing with this board more.


Related Links






All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

Escape the Maze with a VR robot - Vex VR

You don't need to buy a robot to get programming a robot, now there are a range of free and relatively simple to start with robot simulators to play with. Three examples are listed below: - Make code for Lego EV3  https://robotsandphysicalcomputing.blogspot.com/2020/05/programming-robots-virtually-3-lego-ev3.html   - i Robot simulator  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-2-irobot.html - Vex robotics Vexcode VR   https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   It is the last one of these ( https://www.vexrobotics.com/vexcode-vr ) that is the focus of this post and return to hit, after an earlier discussion in  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   .  Two of the nice things about the package, apart from being free, are it uses a Scratch-like programming language and it provides a ...