Skip to main content

Build yourself a Crumble Junkbot


Over the last eight years I have been working (off and on) on a project, junkbots (http://junkbots.blogspot.co.uk/2010/01/introduction.html), in which 'junk' is used to embed environmental, engineering and computing concepts. One part that has grown from this project is using drinks cans, motor, batteries and something to unbalance the motor to produce a vibrating 'bot' that move along a smooth surface. 

To add a little more control both Raspberry Pis (http://robotsandphysicalcomputing.blogspot.co.uk/2015/07/raspberry-pi-controlled-robot-from-junk.html) and Micro:bits (http://robotsandphysicalcomputing.blogspot.co.uk/2016/09/do-it-yourself-remote-controlled.html) have been investigated.


In this post a Crumble controller from Redfern Electronics is used. The crumble controller is an excellent board for this project, it is relatively cheap, it is programmable with it's own graphical language, and it has motor drivers built in. In the figure to the left the parts (apart from adhesive tape) used can be seen.

1. Building the body.
Tape three pens (with their lids on) on to the drinks can - making a tripod arrangement. Add (tape it on usually) a motor with something on the axle to unbalanced the motor; I use broken toy propellors but mis-shapen blu-tak; clothes pegs could be used.

2. Wiring up
Using croc-clips ideally, but loops of wire if not, connect the battery to the controller and also the motors to the controller. Plug in the USB cable into the controller and the computer.

3. Running and Controlling
Make sure the Crumble software (http://redfernelectronics.co.uk/crumble/) is installed on the computer. 

An example is shown below that drives the motor forward and then backward repeatly. You might need to change the percentage values based on experiment, for the motor used. In the video below the junkbot is shown in action.






All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

Escape the Maze with a VR robot - Vex VR

You don't need to buy a robot to get programming a robot, now there are a range of free and relatively simple to start with robot simulators to play with. Three examples are listed below: - Make code for Lego EV3  https://robotsandphysicalcomputing.blogspot.com/2020/05/programming-robots-virtually-3-lego-ev3.html   - i Robot simulator  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-2-irobot.html - Vex robotics Vexcode VR   https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   It is the last one of these ( https://www.vexrobotics.com/vexcode-vr ) that is the focus of this post and return to hit, after an earlier discussion in  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   .  Two of the nice things about the package, apart from being free, are it uses a Scratch-like programming language and it provides a ...