Skip to main content

New unicorn robot


For a few weeks I have had this kit - Smartibot - waiting to play with - finally got around to it. A cardboard-based, app-controlled, AI-enabled robot kit - now that is too tempting!


The kit comes with the parts for one of three models,  including a unicorn robot. A battery pack (takes 4xAA batteries not included), two motors, a bunch of nuts and bolts, 2 screwdrivers, 3 plastic balls, 2 wheel hubs, bunch of elastic bands and a very cute control board. The rest is cardboard including the wheels. The control board seems under-utilised for this task, even on a quick scan; on their kickstarter site, they show it controlling 4 DC motors and 10 servos. 



I was initially concerned it wouldn't have the rigidity needed; it does (even after being accidentally dropped down a flight of stairs) 

The app is free to download for both Apple (see below) and Android. The AI bit initially (certainly on IoS) comes from a cool routine that uses a phone's camera to move when it 'sees' a person.


It was a positive experience to build it; apart from adding batteries, everything was in the box or downloadable. The kit is available to pre-order at http://thecraftyrobot.net/wp/product/smartibot-basic-kit-preorder/

So the next stage is to program it. The company has released a blog post discussing a way to program it - something to try in the future. 





All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Post a Comment

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

WebVR 3 Playtime: Augmented Reality

I am going to try to persuade you that using A-Frame it is not hard to do some simple Augmented Reality (AR) for free, via a browser, but that also can run on a mobile device. Introduction This is part of a short series of articles about some experiments with WebVR Web-based Virtual Reality - in this case based on the wonderful A-Frame  ( https://aframe.io )   .  In the first post  WebVR playtime 1: Basics of setting up, images and rotating blocks ,  I looked at setting up a scene and then rotating an object.  In the second pos t, recapped the basics, then look at adding video, 360 degree video, and models developed elsewhere. In this post we are going to start looking at using WebVR as part of an augmented reality solution. I going to start by building on the great resource Creating Augmented Reality with AR.js and A-Frame by Jerome Etienne, creator of AR.js - the starting code below and the basis of the solution ...