Skip to main content

Robot control by a neuron.

This year the Computing team has been fortunate enough to host three Nuffield Research Placement students (https://www.nuffieldresearchplacements.org/) all working with Dr Scott Turner.


Michael Welsh
Michael has been working on using a micro:bit based bitbot from 4tronix to produce a potential teaching tool; an example of artificial neurons used control a robot. The aim is for this tool to be used with 3rd-year Undergraduates, as part of a module on Artificial Intelligence.

Michael's solution was to use the computer to run and train a single neuron; then for the robot to send values from the line sensors back to the program running on a Computer and receive control signals. 

Sounds easy? No really, in the end, the software running on the computer had to also send and receive the data through a microbit (via USB) and then use radio to communicate with the bit:bot robot. All the various developed parts of the solution were implemented in Python by Michael.




Example of the code.

import serial
from math import fabs
import random
import sys
import glob


#TO DO: GUI, implement manual mode. Make manual mode a button?? When in automatic, weight boxes are greyed out. Otherwise, they are able to be typed into.

def forward(n):
    microbit.write(('f'+str(n)).encode('utf-8'))
def backward(n):
    microbit.write(('b'+str(n)).encode('utf-8'))
def turnR(n):
    microbit.write(('r'+str(n)).encode('utf-8'))
def turnL(n):
    microbit.write(('l'+str(n)).encode('utf-8'))
def end():
    microbit.write('e'.encode('utf-8'))


def serial_ports():
    """ Lists serial port names

        :raises EnvironmentError:
            On unsupported or unknown platforms
        :returns:
            A list of the serial ports available on the system
    """
    if sys.platform.startswith('win'):
        ports = ['COM%s' % (i + 1) for i in range(256)]
    elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):
        # this excludes your current terminal "/dev/tty"
        ports = glob.glob('/dev/tty[A-Za-z]*')
    elif sys.platform.startswith('darwin'):
        ports = glob.glob('/dev/cu.*')
    else:
        raise EnvironmentError('Unsupported platform')

    result = []
    for port in ports:
        try:
            s = serial.Serial(port)
            s.close()
            if '/dev/cu' in port:
                if '/dev/cu.usbmodem' in port:
                    result.append(port)
            else:
                result.append(port)
        except (OSError, serial.SerialException):
            pass
    return result


class neuron:

    def __init__(self,ins):

        self.inputs = [1]

        self.weights = []

        for i in range(ins+1):
            self.weights.append(random.uniform(-1,1))
        #print(self.weights)

        self.LC = 0.005
        
    def get_output(self,inputs):
        self.inputs = [1]+inputs

        WSum = 0

        for i in range(len(self.inputs)):
            WSum += int(self.inputs[i]) * self.weights[i]

        sums = sorted([fabs(WSum), fabs(WSum - (1/3)), fabs(WSum-(2/3)), fabs(WSum-1)])
        #print(sums)
        if sums[0] == fabs(WSum): #return 0 - move backwards
            backward(5)
            return 'B',WSum
        elif sums[0] == fabs(WSum - (1/3)):
            turnR(5)
            return 'R', WSum
        elif sums[0] == fabs(WSum - (2/3)):
            turnL(5)
            return 'L', WSum
        else:
            forward(20)
            return 'F', WSum

    def train(self,inputs,desired):

        result = self.get_output(inputs)[1]
        print(result)
        error = desired - result
        #print(error)

        for w in range(len(self.weights)):

            change = self.LC * int(self.inputs[w]) * error

            print('change in weight ' + str(w) + ': ' + str(change))

            self.weights[w] += change


for i in serial_ports():
    try:
        microbit = serial.Serial(port=i, baudrate=115200)
        break
    except:
        pass

microbit.setDTR(1)
microbit.close()
microbit.open()

control = neuron(2)

mode = input('Automatic or Manual? (A/M)\n')
while mode.lower() not in ['a','m']:
    mode = input('Automatic or Manual? (A/M)\n')
if mode == 'm':
    control.weights[0],control.weights[1],control.weights[2] = int(input('Enter weight 0/bias: ')),int(input('Enter weight 1: ')), int(input('Enter weight 2: '))
while True:
    #microbit.write(input('input: ').encode('utf-8'))
    out = microbit.read(6)
    microbit.flush()
    try:
        out = out.decode()
    except:
        pass
    for i in range(len(out)):
        if str(out[i]) in ['0','1']:
            if i == 0:
                if out[1] == ']':
                    num2 = out[i]
                elif out[1] == ',':
                    num1 = out[i]
            elif i == 5:
                if out[4] == '[':
                    num1 = out[i]
                elif out[4] == ' ':
                    num2 = out[i]
            else:
                if out[i-1] == '[':
                    num1 = out[i]
                elif out[i-1] == ' ':
                    num2 = out[i]
                elif out[i+1] == ']':
                    num2 = out[i]
                elif out[i+1] == ',':
                    num1 = out[i]
        
        #print(out)
    try:
        sleft=int(num1)
        sright=int(num2)
        print([sleft, sright])
        if mode == 'a':
            if [sleft, sright] == [0, 0]:
                control.train([sleft,sright],0)
            elif [sleft, sright] == [0, 1]:
                control.train([sleft,sright], 1/3)
            elif [sleft,sright] == [1, 0]:
                control.train([sleft,sright], 2/3)
            else:
                control.train([sleft,sright], 1)
        else:
            if [sleft, sright] == [0, 0]:
                control.get_output([sleft,sright])
            elif [sleft, sright] == [0, 1]:
                control.get_output([sleft,sright])
            elif [sleft,sright] == [1, 0]:
                control.get_output([sleft,sright])
            else:
                control.get_output([sleft,sright])
    except:
        pass


All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

Post a Comment

Popular posts from this blog

Robot Software

In the previous blog posts for this 'series' "It is a good time...."  Post 1  looked at the hardware unpinning some of this positive rise in robots; Post 2  looked at social robots; Post 3  looked at a collection of small robots; Post 4 looked at further examples of small robots Robots, such as the forthcoming Buddy and JIBO, will be based some established open sourceand other technologies. Jibo will be based around various technologies including Electron and JavaScript (for more details see:  http://blog.jibo.com/2015/07/29/jibo-making-development-readily-accessible-to-all-developers/ ). Buddy is expected to be developed around tools for Unity3d, Arduino and OpenCV, and support Python, C++, C#, Java and JavaScript (for more details see http://www.roboticstrends.com/article/customize_your_buddy_companion_robot_with_this_software_development_kit ).  This post contin ues with some of the software being used with the smaller robots.  A number ...

Speech Recognition in Scratch 3 - turning Hello into Bonjour!

The Raspberry Pi Foundation recently released a programming activity Alien Language , with support Dale from Machine Learning for Kids , that is a brilliant use of Scratch 3 - Speech Recognition to control a sprite in an alien language. Do the activity, and it is very much worth doing, and it will make sense! I  would also recommend going to the  machinelearningforkids.co.uk   site anyway it is full of exciting things to do (for example loads of activities  https://machinelearningforkids.co.uk/#!/worksheets  ) . Scratch 3 has lots of extensions that are accessible through the Extension button in the Scratch 3 editor (see below) which add new fun new blocks to play with. The critical thing for this post is  Machine Learning for Kids  have created a Scratch 3 template with their own extensions for Scratch 3 within it  https://machinelearningforkids.co.uk/scratch3/ . One of which is a Speech to Text extension (see below). You must use this one ...

Escape the Maze with a VR robot - Vex VR

You don't need to buy a robot to get programming a robot, now there are a range of free and relatively simple to start with robot simulators to play with. Three examples are listed below: - Make code for Lego EV3  https://robotsandphysicalcomputing.blogspot.com/2020/05/programming-robots-virtually-3-lego-ev3.html   - i Robot simulator  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-2-irobot.html - Vex robotics Vexcode VR   https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   It is the last one of these ( https://www.vexrobotics.com/vexcode-vr ) that is the focus of this post and return to hit, after an earlier discussion in  https://robotsandphysicalcomputing.blogspot.com/2020/04/programming-robots-virtually-1-vexcode.html   .  Two of the nice things about the package, apart from being free, are it uses a Scratch-like programming language and it provides a ...