Sunday 19 July 2015

Edge following CrumbleBot

Recently I have been playing with the CrumbleBot (http://4tronix.co.uk/store/index.php?rt=product/product&product_id=493) based around the Crumble Controller (http://redfernelectronics.co.uk/crumble/) providing a intuitive graphical interface (similar to Scratch) to control two motors and four inputs/outputs. The CrumbleBot comes with line-detecting sensors and Light-Dependent Resistors for light detection, with a few other features that I have yet to play with. So is nice little framework for simple robotics. Make sure you order the Crumble Controller at the same time as CrumbleBot.

Building the 'Bot' is relatively simple and 4Tronix have provided some easy to follow instructions on-line (http://4tronix.co.uk/crumble/CrumbleBot.pdf) that are almost foolproof (I manage to build it!).

So I wanted to experiment with making a edge following robot - where the robot goes around a line by following the edge of the line. The idea is while make small movements,

  • Check that one of the sensors is on the line (in my case the right sensor);
  • If that sensor detects the line, then pull the robot to the left slightly and then forward a small step;
  • If the sensor does not detect the line, the pull the robot to the right slightly.

Accidentally, I end up playing with two ways to detect the line. Started with connecting, using crocodile clips, the two sensors to the Crumble and treating them as analogue signals and if there was a big difference between the one I want to stay on the line and the one off the line then the line's edge is detected. The assumption is the sensor on the black line reflects less light, so a lower value produced and that is what is detected. It work see the video below that used this approach - but the assumption was wrong.

4Tronix contacted me saying the line sensors are digital (thank you for that), so used them as a digital inputs and it did simplify the code a lot and still worked.





All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Thursday 16 July 2015

cutest computational thinking in the world?

Wonder Workshop (https://www.makewonder.com/) produce the  robots Dash and Dot robots (see picture above). It is hard not to be charmed by these robots, they are cute, easy to use, download the Apps and you are ready to go almost out of the box - and add to this an easy to use but fairly powerful tool for developing programming.


At the time of writing the software is only available for IOS but there are plans for Android. 

Blockly, available as one of apps, can be used to program the robots. It is a simple looking graphical language (simpler looking but similar to Scratch). A simple example (shown opposite) where Dash (the bigger of the two) does things such as  moves forward,  going left, lights change to orange, , left ear changes colour, head moves forward and it roars like a dinosaur. It relatively easy to then add loops and test (such as checking if it's 'friend' Dot is in view). Below is a very short video of Dash moving around until it 'sees' Dot.





It is difficult not to anthropomorphise these, especially when they are left alone they try and attract your attention with noises. They are just fun as well.

Recently, other developers have been producing alternative programming approaches. The Tickle App (https://tickleapp.com/en-us/) has added these robots to their supported devices.





All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Wednesday 15 July 2015

Robots and Problem-solving or is it Computational Thinking

Confession time, this has been a research interest for me, along with a number of colleagues, since around 2005. It started with undergraduate students - investigating teaching and developing problem solving skills as a first step developing programming skills through the use of LEGO-based robots and graphics based programming for undergraduate students. The main vehicle for developing the problem-solving skills has been LEGO Mindstorms robotics kits and series of gradually more challenging robot-based tasks.




Lawhead et al (2003) stated that robots “…provide entry level programming students with a physical model to visually demonstrate concepts” and “the most important benefit of using robots in teaching introductory courses is the focus provided on learning language independent, persistent truths about programming and programming techniques. Robots readily illustrate the idea of computation as interaction”. Synergies can be made with our work and those one on pre-object programming and simulation of robots for teaching programming as a visual approach to the teaching of the widely used programming language  Java.

The main benefits that the students stated of this approach was they  believe robots provide a method to visually and physically see the outcome of a problem. The approach taken the module has been visually-orientated. The appropriateness of this seems to be borne out by the student comments. Student satisfaction  for a module based around this approach is over 92%. One of the comments made was that the linking of the problem-solving robot task and the programming assignment was liked. This feedback is similar to that reported by other authors when teaching programming using robots (Williams et al, 2003).  There is enough scope in this approach to have different levels of complexity/functionality within an assignment task offering a basic ‘pass’ level for a particular task, but also the scope for those students that desire more of a challenge.





Reference
Lawhead PB, Bland CG, Barnes DJ, Duncan ME, Goldweber M, Hollingsworth RG,
Schep M (2003), A Road Map for Teaching Introductory Programming Using
LEGO Mindstorms Robots SIGCSE Bulletin, 35(2): 191-201.
Williams AB (2003) The Qualitative Impact of Using LEGO MINDSTORMS Robot
to Teach Computer Engineering IEEE Trans. EducVol. 46 pp 206.


Publications
  • Hill, G. and Turner, S. J. (2014) Problems First, Second and Third. International Journal of Quality Assurance in Engineering and Technology Education (IJQAETE). 3(3), pp. 88-109. ISSN: 2155-496  DOI: 10.4018/ijqaete.2014070104
  • Turner S (2014) "Greenfoot in Problem solving and Artificial Intelligence" CEISEE 2014 University of Electronic Science and Technology of China, Chengdu China 24-25 April 2014. 2013
  • Turner S (2011) Neural Nets Robotics Workshop. Bot Shop! University of Derby, 28th October 2011.
  • Hill G, Turner S (2011) Chapter 7 Problems First Software Industry-Oriented Education Practices and Curriculum Development: Experiences and Lessons edited by Drs. Matthew Hussey, Xiaofei Xu and Bing Wu. ISBN: 978-1609607975 IGI Global June 2011  DOI: 10.4018/978-1-60960-797-5.ch007
  • Turner S and Hill G (2010) "Innovative use of Robots and Graphical Programming in Software Education" Computer Education Ser. 117 No. 9 pp 54-57 ISSN: 1672-5913
  • Turner S, Hill G, Adams J (2009) "Robots in problem solving in programming" 9th 1-day Teaching of Programming Workshop, University of Bath, 6th April 2009.  
  • Turner S and Hill G(2008) "Robots within the Teaching of Problem-Solving" ITALICS vol. 7 No. 1 June 2008 pp 108-119 ISSN 1473-7507 
  • Turner S and Adams J (2008) "Robots and Problem Solving" 9th Higher Education Academy-ICS Annual Conference, Liverpool Hope University, 26th August - 28th August 2008. pp. 14 ISBN 978-0-9559676-0-3. 
  • Adams, J. and Turner, S., (2008) Problem Solving and Creativity for Undergraduate Computing and Engineering students: the use of robots as a development tool Creating Contemporary Student Learning Environments 2008, Northampton, UK. 
  • Adams, J. and Turner, S., (2008) Problem Solving and Creativity for Undergraduate Engineers: process or product? International Conference on Innovation, Good Practice and Research in Engineering Education 2008, Loughborough, UK. 
  • Adams, J., Turner, S., Kaczmarczyk, S., Picton, P. and Demian, P.,(2008). Problem Solving and Creativity for Undergraduate Engineers: findings of an action research project involving robots International Conference on Engineering Education ICEE 2008, Budapest, Hungary. 
  • Turner S and Hill G(2007) Robots in Problem-Solving and Programming 8th Annual Conference of the Subject Centre for Information and Computer Sciences, University of Southampton, 28th - 30th August 2007, pp 82-85 ISBN 0-978-0-9552005-7-1 
  • Turner S (2007) Developing problem-solving teaching material based upon Microsoft Robotics Studio. 8th Annual Conference of the Subject Centre for Information and Computer Sciences, University of Southampton, 28th - 30th August 2007 pp 151 ISBN 0-978-0-9552005-7-1 
  • Turner S (2007) Developing problem-solving teaching materials based upon Microsoft Robotics Studio. Innovative Teaching Development Fund Dissemination Day 1st March 2007 Microsoft:London 
  • Turner S and Hill G (2006) The Inclusion Of Robots Within The Teaching Of Problemsolving: Preliminary Results Proceedings of 7th Annual Conference of the ICS HE Academy Trinity College, Dublin, 29th - 31st August 2006 Proceedings pg 241-242 ISBN 0-9552005-3-9 

All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Robots from junk and Computational Thinking



A recent presentation as part of the Department of Computing and Immersive Technologies, University of Northampton Research Seminar series, looking a on going project within the Department.

Junkbots has been a ongoing and ever evolving project since 2009 around the use of 'junk' as part of activities to developing skills in STEM subjects. In particular in the presentation (below) shows the links between these activities and Computational Thinking were discussed.








All views are those of the author and should not be seen as the views of any organisation the author is associated with.All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with.

Top posts on this blog in March 2024

The Top 10 viewed post on this blog in March 2024. Covering areas such as small robots, augmented reality, Scratch programming, robots. Micr...